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Abstract 
Accurate and robust human activity recognition are 

essential for surveillance, healthcare and smart 

environment applications. However, the 

unpredictability and complexity of human motions 

provide significant challenges in obtaining the desired 

levels of accuracy and robustness. Conventional 

machine learning models such as Decision Tree, 

Gaussian NB and K Neighbors, have shown limited 

efficacy with accuracy estimates ranging from 78.3% 

to 89.3%. Cutting-edge techniques like Random Forest, 

RBF SVC and XGB Classifier achieve a maximum 

accuracy of 93.8%. We introduce a BI-LSTM model 

that focuses on the most important features using bi-

directional long short-term memory networks with a 

special attention mechanism to address these 

limitations.  

 

The present model demonstrates exceptional 

performance, attaining an accuracy of 99.83%, a 

precision of 99.46%, a recall of 99.75% and an F1 

score of 99.85%, thereby surpassing other approaches 

by a substantial margin. The obtained findings validate 

the model's resilience and effectiveness in precisely 

recognizing and categorizing human actions in 

different fields and situations. 
 

Keywords: Human Activity Recognition (HAR), Attention-

Driven BI-LSTM, Machine Learning Models, Deep 

Learning, Classification Accuracy, Temporal Sequence 

Analysis. 

 

Introduction 
Research in the fields of healthcare, surveillance, intelligent 

settings and sports centers on human activity recognition. 

The primary method of mechanically identifying and 

classifying human actions based on data from sensors or 

video recordings is known as human activity recognition 

(HAR). Anomaly detection, security, fitness monitoring and 

elder care are just a few of the many potential uses for this 

technology. The potential for quick data collection from 

wearables, cellphones and smart cameras to analyze human 

behaviors is exciting. Accurate and reliable human activity 

identification (HAR) is a tough undertaking due to the 

dimensionality of data from many sensors, the variety and 

complexity of human motions and the ambient 

circumstances in which activities occur1. A lot of HAR 

issues have been solved using basic machine learning 

techniques like decision trees, Gaussian NB and neighbors. 

Despite their simplicity and speed, these approaches are 

inefficient because of their reliance on costly, manually 

crafted feature engineering processes and their failure to 

account for temporal correlations in sequential data2. This 

constraint becomes even more problematic due to the 

complexity of real-world circumstances, where activities 

may include overlapping or delicate motions. Hence, these 

models could only manage a reasonable level of accuracy 

(78.3% to 89.3%) in the most recent research. Additionally, 

using more advanced techniques like ensemble learning and 

better algorithms, such as XGB Classifier, Random Forest 

and RBF SVC, greatly boosts the accuracy to 93.8%.  

 

Deep learning offers a versatile substitute for human activity 

recognition (HAR) that can automatically derive properties 

from unprocessed sensor data without the need for costly and 

laborious pre-processing. It is common practice to use 

recurrent neural networks (RNNs) and long short-term 

memory (LSTM) networks, in particular, to learn the 

temporal connections necessary to correctly recognize 

complex activity. However, noisy data or irrelevant 

properties can compromise the accuracy of these 

conventional LSTM models. The BI-LSTM model improves 

feature capture in both past and future contexts, making it 

more suited for range information in activity sequences3. 

These enhancements proved that our strategy worked, but 

now we need to figure out how to build an HAR model that 

can better detect temporal correlations and zero in on more 

discriminative data points. The attention mechanism is 

required in these models to enhance their performance4.  

 

In deep learning, attention algorithms are particularly 

successful in natural language processing (NLP) and image 

recognition tasks. This is because of their ability to assign 

varying degrees of importance to various elements of the 

input data5. Using an attention mechanism with BI-LSTM 

helps the model to be more accurate and robust by letting it 

concentrate on the most important features. To address these 

shortfalls, we provide a new attention-driven BI-LSTM 

model that is specifically trained to recognize and aggregate 

human actions with high accuracy. The current method uses 

BI-LSTM networks to identify the beginning and the end of 

a connection that changes over time. It also contains an 

attention function to help you focus on the correct7.  
 

The attention mechanism distills an input sequence to its 

essential parts by filtering out noise and extraneous 

information. An improved and more reliable method of 

identifying and categorizing human actions is provided by 
this integration, which covers everything from simple sitting 

or walking postures to complex motions involving several 

bodies7. This study suggests an enhancement to a popular 
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HAR deep learning framework by combining the feature 

selection powers of attention mechanisms with the 

sequential modelling capacity of Bidirectional Inference-

based Long Short-Term Memory (BI-LSTM) networks. This 

combined method works better than models that only use 

supervised learning or self-supervised techniques, helping 

the model to achieve much higher accuracy than older 

machine learning methods.  

 

We may take a more holistic view when making decisions 

with BI-LSTM, as the model can include both past and 

future data on activity sequences. By directing the model's 

attention to more subtle changes in motion, the attention 

mechanism improves its ability to differentiate between 

seemingly identical8. Using State-of-the-Art HAR datasets, 

we conducted computationally expensive experiments to 

evaluate the performance of our attention-driven BI-LSTM 

model. Experimental results indicate that the model achieves 

a flawless 99% in recall, accuracy and precision, with an F1 

score of 99.83%. Using NumPy CNNs with these models 

gives better results than both simple and advanced machine 

learning models, such as Decision Tree, Gaussian NB, 

KNeighbors, Random Forest, RBF SVC and XGB 

Classifier9.  

 

The proposed model also achieves a 98.9% accuracy rate, 

which is far better than a traditional Bi-LSTM model and 

shows how much of an advantage an attention mechanism 

may be. The dynamic allocation of attention is a key 

component of this model's attention mechanism, enabling it 

to zero in on the most important parts of the incoming data 

while simultaneously ignoring irrelevant details. Human 

activity recognition (HAR) classifies activities with this in 

mind, since most activities have small motion variations that 

less complex models can miss. Our model's attention 

mechanism helps to improve activity detection by focusing 

on the unique and detailed aspects of human activities, 

making it more reliable and accurate. 

 

Suggested model's remarkable performance, therefore, 

paves the way for the integration of HAR systems into a 

wide variety of practical domains. Healthcare uses the 

concept to track patients' actions in real time. This kind of 

study would provide priceless insight into their lifestyle and 

may reveal health issues like slips or prolonged periods of 

inactivity. Typically, this idea may be used in smart settings 

to enable the development of smart systems that adapt to 

human actions in a way that is both personalized and aware 

of its surroundings. 

 

We are creating a cutting-edge BI-LSTM model that detects 

human activity through an attention-driven design. Our 

approach achieves better classification accuracy by using the 

temporal modelling capabilities of BI-LSTM networks and 

the dynamic feature selection capability of attention 
techniques across different types of human activities. 

Additionally, this supplementary study delves into the 

complexity and limitations of current HAR models, 

illuminating how new attention-driven deep learning 

techniques might improve scalability and performance in 

practical settings.  

 

Therefore, it is a foundational step towards further 

development of Human Activity Recognition (HAR) and its 

many scientifically based applications. The State-of-the-Art 

performance shown by our anticipated model emphasizes 

the need to use cutting-edge deep learning architectures and 

attention mechanisms for HAR tasks. The attention-driven 

BI-LSTM model can revolutionize human activity 

classification and identification. This will pave the way for 

creating more sophisticated systems that understand human 

behaviors and can rely on accurate data. This work will be 

broken into five pieces to thoroughly review the model 

offered in this study and explain its deeper implications.  

 

Review of Literature 
Modern public and private video monitoring uses distributed 

processing7. These networks can identify spatiotemporal 

(non-3D, 2D-spatial and 1-temporal) features, as deep-

learning techniques can detect image features. High 

processing costs prevent real-time recognition of people or 

events without picture segmentation methods. On edge-

computing systems, RNNs and LSMs do real-time person 

identification and activity recognition. The system is 

scalable, portable and accurate across many benchmarks 

including a unique dataset that is sensitive to real-world 

conditions11. DCapsNet, our improved neural network, uses 

a capsule network and a convolutional layer to determine 

activity or gait from sensor input. Accuracy exceeds State-

of-the-Art on four datasets6.  

 

The authors recommend human action recognition for 

computer vision, video surveillance and HCI. No 

comprehensive human activity recognition (HAR) study 

covers design, implementation, algorithms and assessment. 

Caregiving and smart home technologies need precise and 

localized human activity detection. Deep learning is used to 

assess the present and future of human activity recognition 

(HAR). We assess techniques' limits and healthcare, security 

and education applications. WSN-linked sensors monitor 

patients utilizing various sensory phenomena. A new human 

activity recognition (HAR) system using DenseNet and 

Gramian angular field is the subject of this study. This 

method accurately translates sensor data into 2D images.  

 

This research reveals that our accuracy and Matthews 

correlation coefficient metrics are outstanding for 

healthcare14. Dynamic human activity recognition (HAR) is 

prominent in computer vision and pattern recognition. AI 

systems must monitor behaviors to achieve security goals. 

Due to large, homogenous datasets, current HAR models are 

inaccurate or computationally intensive. We present a new 

Hidden Attention Network (HAR) paradigm using a deep bi-

LSTM model with MobileNetV2 transfer learning. Models 

scored top dynamic activity identification accuracy on 

UCF11 and UCF Sport15,16. 
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We employ a large unlabeled UK Biobank accelerometer 

dataset for self-supervised learning to increase model 

generalizability and interpretability. New models 

outperform baselines in eight benchmark datasets, 

enhancing F1 scores and generalization properties. CNN and 

LSTM deep learning models effectively categorized 

opportunity and extrasensory activities17. This work is 

crucial for the HAR community because it highlights gaps in 

the literature and suggests future directions9. Sensor-based 

HAR is common in smart homes and wearables. Two 

methods are suggested to improve how well radar data can 

be classified, reduce mistakes in identifying activities and 

get ready for using radar to monitor activities in elderly care, 

which could reduce the need for cameras and wearables. 

These approaches are hampered by raw data noise and 

artifacts19,20.  

 

In this study, a novel 1D Convolutional Neural Network 

(1CNN) structure for human activity recognition leverages 

accelerometer and gyroscope data to achieve high accuracy 

on most datasets. It also evaluates the effects of each sensor's 

data separately and finds that merging them improves 

healthcare, sports and security applications21. Smartphone 

sensors need human activity recognition (HAR) to identify 

and categorize actions. This course teaches mobile device 

HAR algorithms for sensors and machine learning 

approaches, including preprocessing, feature extraction and 

classification21. The network extracts skeletal coordinates 

using human ID and posture recognition22. 

 

Cellphones with powerful sensors have transformed human 

activity recognition. They examine 20 years of HAR 

techniques employing mobile phone inertial sensors in their 

work. The study details HAR solution procedures, 

referencing traditional approaches at each step and giving 

pertinent results from previous23. Wang et al22,23 showed 

State-of-the-Art conventional human activity recognition 

(HAR) algorithms utilizing RGB cameras. We recommend 

event cameras with minimal latency and high dynamic range 

for EV-HAR24. This work generates a significant 

accelerometer sensor dataset and employs careful feature 

utilization and classification model selection to illustrate the 

building of realistic hyperparameter autoregressive (HAR) 

models with good classification accuracy17.  

 

A novel hybrid accelerometer-based human activity 

recognition (HAR) architecture combines data preprocessing 

and feature extraction. Using CNN, LSTM and other models 

on big datasets (UCI and Pamap2) for offline HAR reveals 

that our approach is better in real-time HAR18. Human 

activity recognition (HAR) is tough for AI due to its diversity 

and individuality. In this research, we present a completely 

automated multi-view feature-integrated deep learning 

technique for HAR utilizing VGG19, which extracts features 

well. Image gradients are used to construct identity-based 
features utilizing relative entropy, mutual information and 

correlation25. Human activity recognition (HAR) is a popular 

smart-home geriatric care automation technology. Semi-

supervised ensemble learning with distance-based clustering 

is used to categorize behavior in this research20. Fall 

detection in independent living is possible using contactless 

radars. With Metsky in both situations, the authors offer a 

multi-label selection approach to locate activities in 

continuous radar data streams.  

 

The study looks at different types of radar data and setups 

using statistical methods based on human measurements to 

get the data ready. ALM's broad optimization strategy to 

improve classification accuracy by combining two models 

(SVM and AlexNet) is confirmed by the above results. The 

dataset, which includes several classifiers, indicates that it 

can identify distinct types of falls. 

 

Human activity recognition (HAR) is significant in 

healthcare and security. Researchers have applied deep 

learning and classical machine learning (ML) to enhance 

feature selection, extraction and parameter adjustment in 

HAR24. This research examines a combination of techniques, 

sensor-based HAR difficulties and novel issues. 

 

Ahmed et al1 evaluated smartphone motion sensors for 

human activity recognition. The curse of dimensionality 

makes identification harder; thus, they suggest a hybrid 

filter-wrapper feature selection technique to locate the most 

relevant targets25. Per-channel convolution bypasses many 

sensor inputs to increase performance in this deep neural 

network implementation. The authors demonstrate that the 

technique outperforms the State-of-the-Art on three datasets. 

Since 2018, researchers have trained deep neural networks 

using multichannel time data to identify and categorize 

everyday events26. Human activity recognition (HAR) needs 

signal segmentation28. 

 

There is still debate over the optimal size for the activity 

detection window. This research compares window widths 

to determine the best detection speed-accuracy ratio. The 

statistical study demonstrates the effectiveness of various in-

table activity detection systems. Motion sensors for human 

activity recognition (HAR) in intelligent settings have 

captured more inertial data. Our complete HAR framework 

uses long short-term memory (LSTM) networks to assess 

mobile device time-series data. The 4-layer CNN-LSTM 

model in this framework exceeds earlier recognition 

algorithms in accuracy29. 

 

Material and Methods 
Figure 1 shows a human activity recognition (HAR) process 

that starts with data cleaning, such as artefact removal, noise 

reduction, bias field correction and normalization. After 

segmenting the cleaned data using thresholding, region 

expanding and watershed algorithms, histogram-based and 

form features are extracted. Using the processed data, 

Decision Tree, Gaussian NB, KNeighbors, different SVM 
classifiers, Logistic Regression, Random Forest Classifier, 

RBF SVC, XGB Classifier and two suggested models, Bi-

LSTM and the upgraded Attention-Driven BI-LSTM, are 
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trained. On test datasets for jumping, bending, waving and 

sitting, accuracy, precision, recall and F1 score are used to 

evaluate the trained models' effectiveness and robustness in 

recognizing and classifying diverse human activities. 

 

Proposed Attention Mechanism with BI-LSTM 

Algorithm: 

# Proposed Attention Mechanism with BI-LSTM 

Algorithm for Human Activity Recognition 

 

1. Data Preprocessing: 

 Input: Time-series data obtained via sensors (e.g., 

gyroscopes, accelerometers) using the device. 

 Normalization: To make sure the sensor data is 

consistent and to shorten the time it takes to train the 

model, normalize it to a range of [0, 1] or [-1, 1]. 

 Partitioning: Split the normalized data into fixed-size 

sliding windows that overlap or do not overlap. The 

data from the sensors is shown in windows that 

correspond to different time periods. 

 An activity label (such as "walking," "running," 

"sitting," etc.) should be assigned to each data segment. 

 

2. Feature Extraction: 

 Make use of each divided window to extract pertinent 

details. Some examples of such characteristics include 

raw sensor data, frequency domain information like 

FFT coefficients and statistical features like mean and 

variance. 

 

3. BI-LSTM Model Initialization: 

 Define the BI-LSTM Layer: 
o Set up a Bidirectional Long Short-Term 

Memory (LSTM) layer with as many hidden 

units as you want. To account for dependencies 

in both the past and the future, this layer will 

perform forward and backward processing on 

the input sequence. 

 Input: batch size, sequence length and Num features 

are the shapes of the time-series data X that has been 

preprocessed. 

 

4. Pass Data Through the BI-LSTM Layer: 

 Obtain hidden states for each time step by transitory the 

input data X through the BI-LSTM layer. This should be 

done in both the forward (hf) and backward (hb) 

directions from the beginning: 

                        

ℎ𝑓, ℎ𝑏 = 𝐵𝐼 − 𝐿𝑆𝑇𝑀(𝑋) 

 

Concatenate the hidden states that exist in the forward and 

backward directions to get the entire hidden state H: 

 

 
Figure 1: Human Activity Recognition (HAR) Model
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H =  [hf, hb] where   H ∈  RT×2d 

 

T: sequence length, d: hidden state dimension. 

 

5. Attention Mechanism Layer: 

 Compute Attention Scores: 
o Calculate the attention scores for each hidden state 

using a weight environment Wa and a bias term ba: 

 

μt =   tanh (WaHt + ba)  
 

 Compute the attention weights α_t for each time step 

using a SoftMax function to ensure they sum to 1: 

 

αt =    
exp(μt)

∑ exp(μi)
T
i=1

  

 

 Apply Attention Weights: 
It is necessary to compute the context vector C by 

applying the attention weights α_t to the hidden states. 

H: 

 

C =  ∑ ∝t Ht

T

t=1

 

 

6. Fully Connected Layer: 

 In order to transfer the context vector C to the 

appropriate output dimension, which corresponds to the 

number of activity classes, you must first pass it through 

a layer that is completely linked: 

 

y = Softmax(Wc C + bc) 

 
At this point, the weights and bias of the fully connected 

layer are denoted by Wc and bc, respectively and the 

output probability distribution across activity classes is 

denoted by y within this context. 

 

7. Training: 

 An unconditional cross-entropy loss function should 

be used in order to determine the degree of disparity 

between the activity labels that were anticipated and 

those that were actually observed: 

 

Loss =  − ∑ yi

N

i=1

 log( yî  ) 

 

 Optimization: Use an optimization procedure like 

Adam or RMSprop to minimize the loss function and 

update the model parameters. 

 Training Loop: Train the model for a predefined 

number of epochs or until the loss converges. 

 

8. Model Evaluation: 

 Measures: Evaluate the trained model on a validation 

or test dataset using performance measures like 

accuracy, precision, recall and F1-score to determine its 

efficacy in recognizing activities. 

 

Key Components of the Algorithm: 

 BI-LSTM Layer: Captures long-term dependencies in 

both directions of the input sequence. 

 Attention Mechanism: Dynamically assigns weights 

to different time steps, allowing the model to focus on 

the most relevant parts of the sequence. 

 Fully Connected Layer: Maps the context vector to 

the output activity classes. 

 Training and Evaluation: Optimizes the model using 

backpropagation and assesses performance using 

appropriate metrics. 

 

The Pseudocode Outline of Proposed Attention 

Mechanism with Bi-LSTM (Bidirectional Long Short-

Term Memory)  

1. Data Preprocessing: 

 Input: Raw Sensor Data (e.g., accelerometer, 

gyroscope readings) 

 Output: Normalized and Segmented Data 

 // Step 1: Normalize sensor data 

 For each sensor data point in Raw Sensor Data: 

 Normalize data point to range [-1, 1] or [0, 1] 

 // Step 2: Segment data into fixed-size sliding windows 

 Initialize Window Size, Overlap Size 

 Segmented Data = [] 

 For each data segment in Raw Sensor Data with sliding 

Window Size: 

 Extract segment of Window Size 

 Append segment to Segmented Data 

 Slide window by (Window Size - Overlap Size) 

 // Step 3: Assign labels to each segment 

 For each segment in Segmented Data: 

 Assign corresponding activity label 

 

2. Feature Extraction: 

 Input: Segmented Data 

 Output: Feature Matrix 

 Feature Matrix = [] 

 For each segment in Segmented Data: 

 Extract features (e.g., mean, variance, FFT coefficients) 

 Append extracted features to Feature Matrix 

 

3. Model Initialization - BI-LSTM Network: 

 Input: Feature Matrix 

 Output: BI-LSTM Model 

 // Step 4: Define the BI-LSTM model structure 

 Initialize BI-LSTM layer with hidden size (d) 

 Define input shape: (Batch Size, Sequence Length, 

Num Features) 

 Initialize weight matrices Wa, Wc and bias terms ba, bc 

for attention and output layers 

 

Pass Data Through the BI-LSTM Network: 

 

 Input: Feature Matrix 
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 Output: Hidden States (H) 

 // Step 5: Forward pass through the BI-LSTM layer 

 For each input sequence X in Feature Matrix: 

 Compute forward hidden states (hf) using LSTM in 

forward direction 

 Compute backward hidden states (hb) using LSTM in 

backward direction 

 Concatenate hf and hb to form hidden states H 

 H = [hf, hb] 

 

Attention Mechanism: 

 

 Input: Hidden States (H) 

 Output: Context Vector (C) 

 // Step 6: Calculate attention scores 

 For each hidden state Ht in H: 

 Compute score ut using tanh activation 

 ut = tanh(Wa * Ht + ba) 

 // Step 7: Calculate attention weights using SoftMax 

 For each score ut: 

 Compute attention weight alpha t 

 Alpha t = exp(ut) / sum(exp(ui) for all ui in H) 

 // Step 8: Compute context vector 

 Context Vector (C) = sum(alpha t * H t for all t in T) 

 

Output Layer for Classification: 

 

 Input: Context Vector (C) 

 Output: Predicted Activity (y hat) 

 // Step 9: Pass the context vector through the fully 

connected layer 

 Y hat = SoftMax (Wc * C + bc) 

 

Training: 

 

 Input: Predicted Activity (y hat), True Labels (y) 

 Output: Trained BI-LSTM Model 

 // Step 10: Define loss function 

 Loss = Categorical Cross-Entropy (y, y hat) 

 // Step 11: Optimize model parameters 

 Choose optimizer (e.g., Adam, RMSprop) 

 For each epoch: 

 Compute slopes of Loss concerning model limitations 

 Update model limitations using optimizer 

 

Evaluation: 

 

 Input: Test Data 

 Output: Model Performance Metrics 

 // Step 12: Evaluate model on validation or test set 

 For each input sequence in Test Data: 

 Preprocess and extract features 

 Pass through BI-LSTM and Attention Mechanism 

 Predict activity label 

 // Step 13: Calculate evaluation metrics 

 

Compute accuracy, precision, recall and F1-score 

The comparison of Attention Mechanism with Bi-LSTM 

and proposed Bi-LSTM architectures 

Advantage of the proposed method: The Attention-

Driven BI-LSTM for Robust Human Activity Recognition 

and Classification uses Bidirectional Long Short-Term 

Memory (BI-LSTM) networks and an attention mechanism 

to capture long-term dependencies and the most important 

input sequence segments. Under the suggested paradigm, 

this integration improves recognition. The BI-LSTM layer 

gathers contextual data from past and future time steps via 

bidirectional data processing. The attention mechanism 

dynamically weights time steps, empowering the model to 

pay attention on critical periods for accurate activity 

categorization.  

 

This strategy improves learning, noise resistance, 

processing sequence length and human activity adaption. 

Thus, it is effective for complex and realistic Human 

activity recognition. Although it is more complex and 

memory-intensive, the model improves accuracy, 

interpretability and classification performance. 

 

Results and Discussion 
The experiments in this study were performed on a PC with 

an Intel© CoreTM i7–9700K CPU (3.60 GHz, eight cores), 

32 GB of RAM and ROM capacity equal to 500GB The 

computer used had a NVidia GeForce RTX 2080 Ti video 

card and ran on Ubuntu 20.04.3 LTS(system). 

 

Datasets: Table 2 compares three datasets used in human 

activity recognition studies, each differing in the number of 

classes, actors, sequences, resolution and frame rate. The 

WVU dataset consists of 13 classes, 48 actors and 200 

sequences with a resolution of 640x480 pixels and a frame 

rate of 20 FPS. The IXMAS dataset also includes 13 classes, 

but with 10 actors and 1148 sequences, having a lower 

resolution of 390x291 pixels and a frame rate of 23 FPS. In 

contrast, the GBA dataset has 13 classes, 17 actors and a 

significantly larger number of sequences (1450), featuring a 

high resolution of 1920x1080 pixels and a frame rate of 50 

FPS, making it the most detailed and comprehensive among 

the three. 

 
Figure 2 enumerates a range of human actions used for the 

goal of identification including dynamic motions such as 

leaping in position, doing jumping jacks, flexing with hands 

fully upright, punching (boxing) and tossing a ball. In 

addition, it encompasses manual gestures such as engaging 

in bilateral waving, unilateral waving (right) and clapping 

hands.  

 

In addition, the list includes postural transitions and static 

positions such as assuming a seated position, upright 

position, seated position followed by standing position and 

the T-pose. A wide variety of physical actions, ranging from 

basic gestures to intricate sequences, are included in these 

activities, offering a complete collection for the analysis and 

identification of human movements.
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Table 1 

The comparison of LSTM, Bi-LSTM and proposed Bi-LSTM architectures 

Feature Bi-LSTM Attention Mechanism with Bi-LSTM 

Direction of Data Processing Bidirectional (both forward and 

backward) 

Bidirectional (both forward and backward) 

Temporal Context Utilizes full sequence context Selectively focuses on important parts of 

the sequence 

Training Complexity Moderate to High High (due to additional attention 

parameters) 

Memory Utilization Moderate High (due to attention layer computations 

and weight storage) 

Suitability for Time-Series 

Data 

High Very High (better at focusing on relevant 

time steps) 

Real-Time Processing Moderate Moderate (requires optimization for real-

time) 

Learning Long-Term 

Dependencies 

High (captures long-term 

dependencies from both directions) 

Very High (enhanced by focusing on key 

time steps) 

Parameter Count Moderate to High High (additional parameters for attention 

weights) 

Feature Learning Capability Good Excellent (better representation by 

weighing important features) 

Temporal Context Utilization Good Excellent (focuses on important parts of the 

temporal context) 

Model Complexity Moderate High (due to the addition of the attention 

mechanism) 

Parameter Efficiency Moderate Less Efficient (requires more parameters) 

Execution Time Moderate Higher (requires extra computation for 

attention weights) 

Adaptability to Sequence 

Length Variation 

Moderate High (dynamically weighs different lengths 

more effectively) 

Robustness to Noise Moderate High (can ignore noisy or irrelevant parts of 

the input sequence) 

Customization for Specific 

Tasks 

Moderate High (attention can be tailored to focus on 

different aspects) 

Integration with Other 

Architectures 

Easy (can be integrated with CNNs, 

etc.) 

Moderate (integration may need extra 

adjustments for attention) 

Typical Use Cases General time-series analysis, speech 

recognition, NLP 

Complex time-series data, HAR, NLP tasks 

needing finer attention 

 

 
Figure 2: A variety of human activities used for recognition purposes, including dynamic movements 
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Table 2 

 Summary of the main characteristics of the used datasets. 

Dataset # classes # actors # seqs. Size (pixels) FPS 

WVU 13 48 200 640*480 20 

IXMAS 13 10 1148 390*291 23 

GBA 13 17 1450 1920*1080 50 

 

Illustrative example: Figure 3 provided model summary 

depicting a neural network architecture with an input layer 

accepting data of shape (None, 100, 3), followed by a 

bidirectional layer with 34,816 parameters. A dropout layer 

with 0 parameters follows, maintaining the output shape of 

(None, 100, 128). The model incorporates several dense 

layers: the first with 1 output unit (129 parameters) and 

another dense layer towards the end with 64 output units 

(8,256 parameters). Various lambda layers and an activation 

layer are interspersed to modify the outputs followed by a 

multiply layer to combine multiple inputs. The final dense 

layer has 6 output units and 390 parameters. The model has 

a total of 43,591 parameters, all of which are trainable, 

indicating a moderately complex neural network suitable for 

tasks like sequence processing or time-series analysis.  

 

Training loss (blue) and validation loss (orange) over a 

number of epochs for an example machine learning model 

are shown in fig. 4. At first, both losses get reduced quickly. 

— signs of fast learning by the model. As the epochs move, 

we see a decreased but still declining loss and then both 

curves flatten down together. This trend means the model is 

learning well and not significantly overfitting, because both 

validation losses seem to follow the training loss i.e. no huge 

surprise on unseen data. 

 

The accuracy of a machine learning model throughout 

training and testing operations across several epochs is 

shown in figure 5. Initially, both the training and test 

accuracy showed a substantial and rapid increase, indicating 

that the model acquires knowledge rapidly. After several 

epochs, the accuracy of both the training and test data 

consistently converged to a high value and stayed relatively 

constant with few fluctuations. The aforementioned finding 

suggests that the model is continuously attaining excellent 

performance on both the training and test datasets, therefore 

showing robust generalization abilities and a little 

inclination to overfit to the training data. 

 

Figure 6 presents a confusion matrix that demonstrates the 

performance of a classification model across many classes. 

The objects positioned along the diagonal and having the 

highest values correspond to the number of correct 

predictions for each class whereas the items located off the 

diagonal indicate the number of misclassifications. The 

matrix demonstrates that the model regularly generates high-

quality predictions for most classes, as seen by the 

significant number of correct predictions highlighted in a 

darker shade of blue along the diagonal. Nevertheless, there 

are cases of misclassifications, shown by the existence of 

cells with lighter colors positioned further away from the 

diagonal. These findings indicate that certain groups are 

being erroneously categorized to varying degrees. These 

results suggest that while the model has a high level of 

general accuracy, there is room for improving its capacity to 

distinguish between specific groups.  

 

A confusion matrix illustrating the performance of a 

classification model over many classes is shown in figure 7. 

The diagonal cells of the matrix, with the largest values, 

represent the count of properly predicted cases for each 

class, therefore indicating the model's robust performance in 

reliably detecting the majority of categories. Instances of 

misclassifications, when the model has mistakenly identified 

one class as another, are shown by the lighter hues and lower 

values off the diagonal. While the matrix demonstrates 

commendable general accuracy with a clustering of accurate 

predictions along the diagonal, there are some cases where 

the model's predictions are inaccurate, indicating possible 

opportunities for additional model enhancement and greater 

ability to differentiate between comparable classes. 

 

Results and Discussion 
The result in the planned and the existing method for the 

WVU dataset: Table 3 and figure 8 provide a comparison 

of the level of accuracy, precision, recall and F1 score across 

many machine learning models used for identifying human 

activities. Among the models evaluated, Decision Tree, 

GaussianNB, KNeighbors, Linear SVC, Linear 

Discriminant Analysis, Logistic Regression, Random Forest 

Classifier, RBF SVC and XGB Classifier exhibit 

progressively higher levels of quality. Within the set of 

models, XGB classifier attains the best level of accuracy, 

reaching 93.8%. By using the Bi-LSTM model, the results 

are much enhanced, reaching an accuracy rate of 98.9%. The 

Attention-Driven BI-LSTM model, as proposed, has 

exceptional performance, achieving an accuracy of 99.76% 

with precision, recall and F1 scores all above 99%. These 

results demonstrate its higher effectiveness in precisely 

detecting human behaviors in comparison to the other 

models examined 

 

The result in the projected and the existing method for 
the GBA Dataset: A comparative analysis of many machine 

learning models for human activity identification is shown 

in table 3 and figure 9. The evaluation is based on metrics 

including accuracy, precision, recall and F1 score. 

Conventional algorithms such as Decision Tree, Gaussian 

NB, KNeighbors, Linear SVC, Linear Discriminant 

Analysis and Logistic Regression provide modest 

performance, achieving accuracy rates between 78.3% and 

89.3%. Highly sophisticated models, such as the Random 
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Forest Classifier, RBF SVC and XGB Classifier, get accuracy rates as high as 93.8%.  

 

 
Figure 3: Depicting a neural network architecture with an input layer accepting data 

 

 
Figure 4: Model train and val loss 

 

 
Figure 5: Model train and test accuracy 
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Figure 6: Confusion matrix for Bi-LSTM 

 

 
Figure 7: Confusion matrix for Proposed Attention-Driven BI-LSTM 

 

Table 3 

The result in the proposed and the present method for the WVU dataset 

Model Name Accuracy (%) Precision (%) Recall (%) F1(%) 

Decision Tree [1] 85.2 84 83.5 83.75 

Gaussian NB [1] 78.3 77.9 78.1 78 

KNeighbors [1] 86.5 85.7 86.2 85.95 

Linear SVC(L Based Impl)  [1] 87.1 86.4 86.8 86.6 

Linear Discriminant Analysis [1] 88.2 87.9 88 87.95 

Logistic Regression [1] 89.3 89.1 89 89.05 

Random Forest Classifier [1] 91.7 91.5 91.6 91.55 

RBF SVC [1] 92.5 92.2 92.3 92.25 

XGB Classifier [1] 93.8 93.5 93.6 93.55 

Bi-LSTM 98.9 98.7 98.5 98.6 

Proposed Attention-Driven BI-LSTM 99.76 99.72 99.62 99.48 
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Figure 8: The result in the proposed and the existing method for the WVU dataset 

 

Table 4 

The result in the proposed and the present method for the GBA dataset 

Model Name Accuracy (%) Precision (%) Recall (%) F1(%) 

Decision Tree [1] 85.2 84 83.5 83.75 

Gaussian NB [1] 78.3 77.9 78.1 78 

KNeighbors    [1] 86.5 85.7 86.2 85.95 

Linear SVC(LBased Impl)  [1] 87.1 86.4 86.8 86.6 

Linear Discriminant Analysis [1] 88.2 87.9 88 87.95 

Logistic Regression  [1] 89.3 89.1 89 89.05 

Random Forest Classifier [1] 91.7 91.5 91.6 91.55 

RBF SVC [1] 92.5 92.2 92.3 92.25 

XGBClassifier  [1] 93.8 93.5 93.6 93.55 

Proposed Bi-LSTM 98.9 98.7 98.5 98.6 

Proposed Attention-Driven BI-LSTM 99.85 99.76 99.37 99.43 

 
Deep learning models provide the highest level of 

performance: the proposed Bi-LSTM attains an accuracy of 

98.9%, while the proposed Attention-Driven Bi-LSTM 

surpasses this by achieving an exceptional accuracy of 

99.85%, together with similarly high precision, recall and F1 

scores, so showcasing its superior efficacy in tasks related to 

recognizing human activities. 

 

The result in the projected and the existing method for 

the IXMAS Dataset:  Table 5 and figure 10 assessed several 

models for human activity identification using accuracy, 

precision, recall and F1 score indicators. Conventional 

Machine Learning Models such as Decision Tree, Gaussian 

NB, KNeighbors, Linear SVC, Linear Discriminant 

Analysis and Logistic Regression provide rather satisfactory 

performance, achieving accuracy rates between 78.3% and 

89.3%. 

 

Highly sophisticated models like the Random Forest 

Classifier, RBF SVC and XGB Classifier, demonstrate 

enhanced accuracy, achieving a maximum of 93.8%. Deep 

learning models demonstrate the highest performance, with 

the proposed bi-LSTM model achieving an accuracy of 

98.9% and the proposed Attention-Driven bi-LSTM model 

yielding the highest accuracy of 99.83%. These models also 

exhibit outstanding precision, recall and F1 scores, 

underscoring their superior effectiveness in human activity 

recognition. 

 

Conclusion 
The proposed Attention-Driven BI-LSTM model has 

exceptional performance in the areas of human activity 

detection and classification, surpassing both conventional 

and sophisticated machine learning models by a substantial 

margin. A comparison examination reveals that traditional 
models such as Decision Tree, Gaussian NB, KNeighbors 

and Linear SVC attain accuracy levels ranging from 78.3% 

to 89.3%. In contrast, more advanced methods like the 
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Random Forest Classifier, RBF SVC and XGB Classifier 

enhance accuracy to 93.8%. Nevertheless, these models are 

still inferior in comparison to deep learning techniques. 

Reflecting the benefits of recurrent neural networks in 

capturing temporal relationships in sequential data, the Bi-

LSTM model enhances the recognition accuracy to 98.9%. 

 

The suggested Attention-Driven BI-LSTM achieves the 

greatest performance, yielding an exceptional accuracy of 

99.83%, as well as precision, recall and F1 scores over 99%. 

The significant enhancement may be ascribed to the 

mechanism's capacity to dynamically concentrate on the 

most relevant characteristics, hence optimizing the model's 

ability to differentiate between various activities with a high 

level of certainty. A robust and highly successful solution for 

human activity detection, the Attention-Driven BI-LSTM 

model has the potential to greatly advance applications in 

healthcare, surveillance and smart environments where 

precise and real-time activity monitoring are crucial.  

 

 
Figure 9: The result in the proposed and the existing method for the GBA dataset 

 

 
Figure 10: The result in the proposed and the existing method for the IXMAS Dataset 
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Table 5 

The result in the proposed and the present method for the IXMAS Dataset 

Model Name Accuracy (%) Precision(%) Recall(%) F1(%) 

Decision Tree [1] 85.2 84 83.5 83.75 

Gaussian [1] 78.3 77.9 78.1 78 

Kneighbors [1] 86.5 85.7 86.2 85.95 

Linear SVC(LBasedImpl)  [1] 87.1 86.4 86.8 86.6 

Linear Discriminant Analysis [1] 88.2 87.9 88 87.95 

Logistic Regression  [1] 89.3 89.1 89 89.05 

Random Forest Classifier[1] 91.7 91.5 91.6 91.55 

RBF SVC  [1] 92.5 92.2 92.3 92.25 

XGB Classifier  [1] 93.8 93.5 93.6 93.55 

Proposed Bi-LSTM 98.9 98.7 98.5 98.6 

Proposed Attention-Driven BI-LSTM 99.83 99.46 99.75 99.85 
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