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Abstract

Accurate and robust human activity recognition are
essential for surveillance, healthcare and smart
environment applications. However, the
unpredictability and complexity of human motions
provide significant challenges in obtaining the desired
levels of accuracy and robustness. Conventional
machine learning models such as Decision Tree,
Gaussian NB and K Neighbors, have shown limited
efficacy with accuracy estimates ranging from 78.3%
to 89.3%. Cutting-edge techniques like Random Forest,
RBF SVC and XGB Classifier achieve a maximum
accuracy of 93.8%. We introduce a BI-LSTM model
that focuses on the most important features using bi-
directional long short-term memory networks with a

special attention mechanism to address these
limitations.
The present model demonstrates exceptional

performance, attaining an accuracy of 99.83%, a
precision of 99.46%, a recall of 99.75% and an F1
score of 99.85%, thereby surpassing other approaches
by a substantial margin. The obtained findings validate
the model's resilience and effectiveness in precisely
recognizing and categorizing human actions in
different fields and situations.

Keywords: Human Activity Recognition (HAR), Attention-
Driven BI-LSTM, Machine Learning Models, Deep
Learning, Classification Accuracy, Temporal Sequence
Analysis.

Introduction

Research in the fields of healthcare, surveillance, intelligent
settings and sports centers on human activity recognition.
The primary method of mechanically identifying and
classifying human actions based on data from sensors or
video recordings is known as human activity recognition
(HAR). Anomaly detection, security, fitness monitoring and
elder care are just a few of the many potential uses for this
technology. The potential for quick data collection from
wearables, cellphones and smart cameras to analyze human
behaviors is exciting. Accurate and reliable human activity
identification (HAR) is a tough undertaking due to the
dimensionality of data from many sensors, the variety and
complexity of human motions and the ambient
circumstances in which activities occur®. A lot of HAR
issues have been solved using basic machine learning
techniques like decision trees, Gaussian NB and neighbors.

https://doi.org/10.25303/188da019032

Despite their simplicity and speed, these approaches are
inefficient because of their reliance on costly, manually
crafted feature engineering processes and their failure to
account for temporal correlations in sequential data?. This
constraint becomes even more problematic due to the
complexity of real-world circumstances, where activities
may include overlapping or delicate motions. Hence, these
models could only manage a reasonable level of accuracy
(78.3% to 89.3%) in the most recent research. Additionally,
using more advanced techniques like ensemble learning and
better algorithms, such as XGB Classifier, Random Forest
and RBF SVC, greatly boosts the accuracy to 93.8%.

Deep learning offers a versatile substitute for human activity
recognition (HAR) that can automatically derive properties
from unprocessed sensor data without the need for costly and
laborious pre-processing. It is common practice to use
recurrent neural networks (RNNs) and long short-term
memory (LSTM) networks, in particular, to learn the
temporal connections necessary to correctly recognize
complex activity. However, noisy data or irrelevant
properties can compromise the accuracy of these
conventional LSTM models. The BI-LSTM model improves
feature capture in both past and future contexts, making it
more suited for range information in activity sequences®.
These enhancements proved that our strategy worked, but
now we need to figure out how to build an HAR model that
can better detect temporal correlations and zero in on more
discriminative data points. The attention mechanism is
required in these models to enhance their performance®.

In deep learning, attention algorithms are particularly
successful in natural language processing (NLP) and image
recognition tasks. This is because of their ability to assign
varying degrees of importance to various elements of the
input data®. Using an attention mechanism with BI-LSTM
helps the model to be more accurate and robust by letting it
concentrate on the most important features. To address these
shortfalls, we provide a new attention-driven BI-LSTM
model that is specifically trained to recognize and aggregate
human actions with high accuracy. The current method uses
BI-LSTM networks to identify the beginning and the end of
a connection that changes over time. It also contains an
attention function to help you focus on the correct’.

The attention mechanism distills an input sequence to its
essential parts by filtering out noise and extraneous
information. An improved and more reliable method of
identifying and categorizing human actions is provided by
this integration, which covers everything from simple sitting
or walking postures to complex motions involving several
bodies’. This study suggests an enhancement to a popular
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HAR deep learning framework by combining the feature
selection powers of attention mechanisms with the
sequential modelling capacity of Bidirectional Inference-
based Long Short-Term Memory (BI-LSTM) networks. This
combined method works better than models that only use
supervised learning or self-supervised techniques, helping
the model to achieve much higher accuracy than older
machine learning methods.

We may take a more holistic view when making decisions
with BI-LSTM, as the model can include both past and
future data on activity sequences. By directing the model's
attention to more subtle changes in motion, the attention
mechanism improves its ability to differentiate between
seemingly identical®. Using State-of-the-Art HAR datasets,
we conducted computationally expensive experiments to
evaluate the performance of our attention-driven BI-LSTM
model. Experimental results indicate that the model achieves
a flawless 99% in recall, accuracy and precision, with an F1
score of 99.83%. Using NumPy CNNs with these models
gives better results than both simple and advanced machine
learning models, such as Decision Tree, Gaussian NB,
KNeighbors, Random Forest, RBF SVC and XGB
Classifier®.

The proposed model also achieves a 98.9% accuracy rate,
which is far better than a traditional Bi-LSTM model and
shows how much of an advantage an attention mechanism
may be. The dynamic allocation of attention is a key
component of this model's attention mechanism, enabling it
to zero in on the most important parts of the incoming data
while simultaneously ignoring irrelevant details. Human
activity recognition (HAR) classifies activities with this in
mind, since most activities have small motion variations that
less complex models can miss. Our model's attention
mechanism helps to improve activity detection by focusing
on the unique and detailed aspects of human activities,
making it more reliable and accurate.

Suggested model's remarkable performance, therefore,
paves the way for the integration of HAR systems into a
wide variety of practical domains. Healthcare uses the
concept to track patients' actions in real time. This kind of
study would provide priceless insight into their lifestyle and
may reveal health issues like slips or prolonged periods of
inactivity. Typically, this idea may be used in smart settings
to enable the development of smart systems that adapt to
human actions in a way that is both personalized and aware
of its surroundings.

We are creating a cutting-edge BI-LSTM model that detects
human activity through an attention-driven design. Our
approach achieves better classification accuracy by using the
temporal modelling capabilities of BI-LSTM networks and
the dynamic feature selection capability of attention
techniques across different types of human activities.
Additionally, this supplementary study delves into the
complexity and limitations of current HAR models,
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illuminating how new attention-driven deep learning
techniques might improve scalability and performance in
practical settings.

Therefore, it is a foundational step towards further
development of Human Activity Recognition (HAR) and its
many scientifically based applications. The State-of-the-Art
performance shown by our anticipated model emphasizes
the need to use cutting-edge deep learning architectures and
attention mechanisms for HAR tasks. The attention-driven
BI-LSTM model can revolutionize human activity
classification and identification. This will pave the way for
creating more sophisticated systems that understand human
behaviors and can rely on accurate data. This work will be
broken into five pieces to thoroughly review the model
offered in this study and explain its deeper implications.

Review of Literature

Modern public and private video monitoring uses distributed
processing’. These networks can identify spatiotemporal
(non-3D, 2D-spatial and 1-temporal) features, as deep-
learning techniques can detect image features. High
processing costs prevent real-time recognition of people or
events without picture segmentation methods. On edge-
computing systems, RNNs and LSMs do real-time person
identification and activity recognition. The system is
scalable, portable and accurate across many benchmarks
including a unique dataset that is sensitive to real-world
conditions®'. DCapsNet, our improved neural network, uses
a capsule network and a convolutional layer to determine
activity or gait from sensor input. Accuracy exceeds State-
of-the-Art on four datasets®.

The authors recommend human action recognition for
computer vision, video surveillance and HCI. No
comprehensive human activity recognition (HAR) study
covers design, implementation, algorithms and assessment.
Caregiving and smart home technologies need precise and
localized human activity detection. Deep learning is used to
assess the present and future of human activity recognition
(HAR). We assess techniques' limits and healthcare, security
and education applications. WSN-linked sensors monitor
patients utilizing various sensory phenomena. A new human
activity recognition (HAR) system using DenseNet and
Gramian angular field is the subject of this study. This
method accurately translates sensor data into 2D images.

This research reveals that our accuracy and Matthews
correlation coefficient metrics are outstanding for
healthcare'4. Dynamic human activity recognition (HAR) is
prominent in computer vision and pattern recognition. Al
systems must monitor behaviors to achieve security goals.
Due to large, homogenous datasets, current HAR models are
inaccurate or computationally intensive. We present a new
Hidden Attention Network (HAR) paradigm using a deep bi-
LSTM model with MobileNetV2 transfer learning. Models
scored top dynamic activity identification accuracy on
UCF11 and UCF Sport!516,
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We employ a large unlabeled UK Biobank accelerometer
dataset for self-supervised learning to increase model
generalizability and interpretability. New models
outperform baselines in eight benchmark datasets,
enhancing F1 scores and generalization properties. CNN and
LSTM deep learning models effectively categorized
opportunity and extrasensory activities’’. This work is
crucial for the HAR community because it highlights gaps in
the literature and suggests future directions®. Sensor-based
HAR is common in smart homes and wearables. Two
methods are suggested to improve how well radar data can
be classified, reduce mistakes in identifying activities and
get ready for using radar to monitor activities in elderly care,
which could reduce the need for cameras and wearables.
These approaches are hampered by raw data noise and
artifacts!®2,

In this study, a novel 1D Convolutional Neural Network
(1CNN) structure for human activity recognition leverages
accelerometer and gyroscope data to achieve high accuracy
on most datasets. It also evaluates the effects of each sensor’s
data separately and finds that merging them improves
healthcare, sports and security applications?*. Smartphone
sensors need human activity recognition (HAR) to identify
and categorize actions. This course teaches mobile device
HAR algorithms for sensors and machine learning
approaches, including preprocessing, feature extraction and
classification?*. The network extracts skeletal coordinates
using human ID and posture recognition??.

Cellphones with powerful sensors have transformed human
activity recognition. They examine 20 years of HAR
techniques employing mobile phone inertial sensors in their
work. The study details HAR solution procedures,
referencing traditional approaches at each step and giving
pertinent results from previous?®. Wang et al?>?3 showed
State-of-the-Art conventional human activity recognition
(HAR) algorithms utilizing RGB cameras. We recommend
event cameras with minimal latency and high dynamic range
for EV-HAR?*. This work generates a significant
accelerometer sensor dataset and employs careful feature
utilization and classification model selection to illustrate the
building of realistic hyperparameter autoregressive (HAR)
models with good classification accuracy?’.

A novel hybrid accelerometer-based human activity
recognition (HAR) architecture combines data preprocessing
and feature extraction. Using CNN, LSTM and other models
on big datasets (UCI and Pamap?2) for offline HAR reveals
that our approach is better in real-time HAR. Human
activity recognition (HAR) is tough for Al due to its diversity
and individuality. In this research, we present a completely
automated multi-view feature-integrated deep learning
technique for HAR utilizing VGG19, which extracts features
well. Image gradients are used to construct identity-based
features utilizing relative entropy, mutual information and
correlation?®. Human activity recognition (HAR) is a popular
smart-home geriatric care automation technology. Semi-
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supervised ensemble learning with distance-based clustering
is used to categorize behavior in this research®. Fall
detection in independent living is possible using contactless
radars. With Metsky in both situations, the authors offer a
multi-label selection approach to locate activities in
continuous radar data streams.

The study looks at different types of radar data and setups
using statistical methods based on human measurements to
get the data ready. ALM's broad optimization strategy to
improve classification accuracy by combining two models
(SVM and AlexNet) is confirmed by the above results. The
dataset, which includes several classifiers, indicates that it
can identify distinct types of falls.

Human activity recognition (HAR) is significant in
healthcare and security. Researchers have applied deep
learning and classical machine learning (ML) to enhance
feature selection, extraction and parameter adjustment in
HAR?*, This research examines a combination of techniques,
sensor-based HAR difficulties and novel issues.

Ahmed et al* evaluated smartphone motion sensors for
human activity recognition. The curse of dimensionality
makes identification harder; thus, they suggest a hybrid
filter-wrapper feature selection technique to locate the most
relevant targets?®. Per-channel convolution bypasses many
sensor inputs to increase performance in this deep neural
network implementation. The authors demonstrate that the
technique outperforms the State-of-the-Art on three datasets.
Since 2018, researchers have trained deep neural networks
using multichannel time data to identify and categorize
everyday events?. Human activity recognition (HAR) needs
signal segmentation?.

There is still debate over the optimal size for the activity
detection window. This research compares window widths
to determine the best detection speed-accuracy ratio. The
statistical study demonstrates the effectiveness of various in-
table activity detection systems. Motion sensors for human
activity recognition (HAR) in intelligent settings have
captured more inertial data. Our complete HAR framework
uses long short-term memory (LSTM) networks to assess
mobile device time-series data. The 4-layer CNN-LSTM
model in this framework exceeds earlier recognition
algorithms in accuracy?°.

Material and Methods

Figure 1 shows a human activity recognition (HAR) process
that starts with data cleaning, such as artefact removal, noise
reduction, bias field correction and normalization. After
segmenting the cleaned data using thresholding, region
expanding and watershed algorithms, histogram-based and
form features are extracted. Using the processed data,
Decision Tree, Gaussian NB, KNeighbors, different SVM
classifiers, Logistic Regression, Random Forest Classifier,
RBF SVC, XGB Classifier and two suggested models, Bi-
LSTM and the upgraded Attention-Driven BI-LSTM, are
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trained. On test datasets for jumping, bending, waving and
sitting, accuracy, precision, recall and F1 score are used to
evaluate the trained models' effectiveness and robustness in
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raw sensor data, frequency domain information like
FFT coefficients and statistical features like mean and
variance.

recognizing and classifying diverse human activities.
3. BI-LSTM Model Initialization:
Proposed Attention Mechanism with BI-LSTM e Define the BI-LSTM Layer:
Algorithm: o Set up a Bidirectional Long Short-Term
# Proposed Attention Mechanism with BI-LSTM Memory (LSTM) layer with as many hidden
Algorithm for Human Activity Recognition units as you want. To account for dependencies
in both the past and the future, this layer will
perform forward and backward processing on
the input sequence.
Input: batch size, sequence length and Num features
are the shapes of the time-series data X that has been
preprocessed.

1. Data Preprocessing:

e Input: Time-series data obtained via sensors (e.g.,
gyroscopes, accelerometers) using the device. .

e Normalization: To make sure the sensor data is
consistent and to shorten the time it takes to train the
model, normalize it to a range of [0, 1] or [-1, 1].

e Partitioning: Split the normalized data into fixed-size
sliding windows that overlap or do not overlap. The .
data from the sensors is shown in windows that
correspond to different time periods.

e An activity label (such as "walking,” "running,"
"sitting," etc.) should be assigned to each data segment.

4. Pass Data Through the BI-LSTM Layer:

Obtain hidden states for each time step by transitory the
input data X through the BI-LSTM layer. This should be
done in both the forward (hf) and backward (hp)
directions from the beginning:

hs, hy = BI — LSTM(X)

2. Feature Extraction:
e Make use of each divided window to extract pertinent
details. Some examples of such characteristics include

Concatenate the hidden states that exist in the forward and
backward directions to get the entire hidden state H:

1. Data Cleaning

2. Segmentation

3. Feature extraction
Artifact Remowal
Moise Reduction Thresholding = Histogram-based
Region Growing Features
Watershed Algorithm = Shape Features

4. Models

DecisionTree

Gaussian™NB

KMNeighbors

Linear SVC{LbasedTmpl)
LinearDiscriminantAnalysis
Logistic Regression
RandomForestClassilier

Model
Training

KGBClassilier

Proposed Bi-L.STM
PFroposed Attention-IDriven
BI-LSTM

Trained Model

1. Jumping in place

10. Sit down
11l. Stand up
12. T-pose

2. Jumping jacks

3. Bending- hands up
all the way down 4
Funching {boxing)

5. Waving - two hands

_

Figure 1: Human Activity Recognition (HAR) Model

h. Waving - one hand {right)
7. Clapping hands

. Throwing a ball

9. Sit down then stand up
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H = [hyh,] where H € RT*2d
T: sequence length, d: hidden state dimension.

5. Attention Mechanism Layer:
e Compute Attention Scores:
o Calculate the attention scores for each hidden state
using a weight environment W, and a bias term b,.

K = tanh (W H; +b,)

e Compute the attention weights a_t for each time step
using a SoftMax function to ensure they sum to 1:

exp(He)
’ ?:1 exp (i)
o Apply Attention Weights:
It is necessary to compute the context vector C by
applying the attention weights o,_t to the hidden states.
H:

T
C=Zo<th

t=1

6. Fully Connected Layer:

e In order to transfer the context vector C to the
appropriate output dimension, which corresponds to the
number of activity classes, you must first pass it through
a layer that is completely linked:

y = Softmax(W, C + b,)

At this point, the weights and bias of the fully connected
layer are denoted by W, and b, respectively and the
output probability distribution across activity classes is
denoted by y within this context.

7. Training:

e An unconditional cross-entropy loss function should
be used in order to determine the degree of disparity
between the activity labels that were anticipated and
those that were actually observed:

N
Loss = —Zyi log(¥, )
i=1

e Optimization: Use an optimization procedure like
Adam or RMSprop to minimize the loss function and
update the model parameters.

e Training Loop: Train the model for a predefined
number of epochs or until the loss converges.

8. Model Evaluation:

e Measures: Evaluate the trained model on a validation
or test dataset using performance measures like
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accuracy, precision, recall and F1-score to determine its
efficacy in recognizing activities.

Key Components of the Algorithm:

e BI-LSTM Layer: Captures long-term dependencies in
both directions of the input sequence.

e Attention Mechanism: Dynamically assigns weights
to different time steps, allowing the model to focus on
the most relevant parts of the sequence.

e Fully Connected Layer: Maps the context vector to
the output activity classes.

e Training and Evaluation: Optimizes the model using
backpropagation and assesses performance using
appropriate metrics.

The Pseudocode Outline of Proposed Attention
Mechanism with Bi-LSTM (Bidirectional Long Short-
Term Memory)
1. Data Preprocessing:
Input: Raw Sensor Data (e.g., accelerometer,
gyroscope readings)
Output: Normalized and Segmented Data
// Step 1: Normalize sensor data
For each sensor data point in Raw Sensor Data:
Normalize data point to range [-1, 1] or [0, 1]
/ Step 2: Segment data into fixed-size sliding windows
Initialize Window Size, Overlap Size
Segmented Data =[]
For each data segment in Raw Sensor Data with sliding
Window Size:
Extract segment of Window Size
Append segment to Segmented Data
Slide window by (Window Size - Overlap Size)
I Step 3: Assign labels to each segment
For each segment in Segmented Data:
Assign corresponding activity label

. Feature Extraction:
Input: Segmented Data
Output: Feature Matrix
Feature Matrix = []
For each segment in Segmented Data:
Extract features (e.g., mean, variance, FFT coefficients)
Append extracted features to Feature Matrix

e o o o o o

3. Model Initialization - BI-LSTM Network:

e Input: Feature Matrix

e Output: BI-LSTM Model

e [/ Step 4: Define the BI-LSTM model structure

e Initialize BI-LSTM layer with hidden size (d)

e Define input shape: (Batch Size, Sequence Length,
Num Features)

o Initialize weight matrices Wa., W, and bias terms b, be
for attention and output layers

Pass Data Through the BI-LSTM Network:

e Input: Feature Matrix
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Output: Hidden States (H)

/I Step 5: Forward pass through the BI-LSTM layer

For each input sequence X in Feature Matrix:

Compute forward hidden states (hs) using LSTM in

forward direction

e Compute backward hidden states (hy) using LSTM in
backward direction

¢ Concatenate hsand hy to form hidden states H

° H= [hf, hb]

Attention Mechanism:

Input: Hidden States (H)

Output: Context Vector (C)

// Step 6: Calculate attention scores

For each hidden state H; in H:

Compute score ut using tanh activation

ut = tanh(Wa * Hi + by)

/Il Step 7: Calculate attention weights using SoftMax
For each score ut:

Compute attention weight alpha t

Alphat = exp(ut) / sum(exp(ui) for all ui in H)

// Step 8: Compute context vector

Context Vector (C) = sum(alphat*H forall tin T)

Output Layer for Classification:

e Input: Context Vector (C)

e Output: Predicted Activity (y hat)

e /| Step 9: Pass the context vector through the fully
connected layer

e Y hat = SoftMax (Wc * C + bc)

Training:

Input: Predicted Activity (y hat), True Labels (y)
Output: Trained BI-LSTM Model

/I Step 10: Define loss function

Loss = Categorical Cross-Entropy (y, y hat)

// Step 11: Optimize model parameters

Choose optimizer (e.g., Adam, RMSprop)

For each epoch:

Compute slopes of Loss concerning model limitations
Update model limitations using optimizer

Evaluation:

Input: Test Data

Output: Model Performance Metrics

// Step 12: Evaluate model on validation or test set
For each input sequence in Test Data:

Preprocess and extract features

Pass through BI-LSTM and Attention Mechanism
Predict activity label

/I Step 13: Calculate evaluation metrics

Compute accuracy, precision, recall and F1-score
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The comparison of Attention Mechanism with Bi-LSTM
and proposed Bi-LSTM architectures

Advantage of the proposed method: The Attention-
Driven BI-LSTM for Robust Human Activity Recognition
and Classification uses Bidirectional Long Short-Term
Memory (BI-LSTM) networks and an attention mechanism
to capture long-term dependencies and the most important
input sequence segments. Under the suggested paradigm,
this integration improves recognition. The BI-LSTM layer
gathers contextual data from past and future time steps via
bidirectional data processing. The attention mechanism
dynamically weights time steps, empowering the model to
pay attention on critical periods for accurate activity
categorization.

This strategy improves learning, noise resistance,
processing sequence length and human activity adaption.
Thus, it is effective for complex and realistic Human
activity recognition. Although it is more complex and
memory-intensive, the model improves accuracy,
interpretability and classification performance.

Results and Discussion

The experiments in this study were performed on a PC with
an Intel© CoreTM i7-9700K CPU (3.60 GHz, eight cores),
32 GB of RAM and ROM capacity equal to 500GB The
computer used had a NVidia GeForce RTX 2080 Ti video
card and ran on Ubuntu 20.04.3 LTS(system).

Datasets: Table 2 compares three datasets used in human
activity recognition studies, each differing in the number of
classes, actors, sequences, resolution and frame rate. The
WVU dataset consists of 13 classes, 48 actors and 200
sequences with a resolution of 640x480 pixels and a frame
rate of 20 FPS. The IXMAS dataset also includes 13 classes,
but with 10 actors and 1148 sequences, having a lower
resolution of 390x291 pixels and a frame rate of 23 FPS. In
contrast, the GBA dataset has 13 classes, 17 actors and a
significantly larger number of sequences (1450), featuring a
high resolution of 1920x1080 pixels and a frame rate of 50
FPS, making it the most detailed and comprehensive among
the three.

Figure 2 enumerates a range of human actions used for the
goal of identification including dynamic motions such as
leaping in position, doing jumping jacks, flexing with hands
fully upright, punching (boxing) and tossing a ball. In
addition, it encompasses manual gestures such as engaging
in bilateral waving, unilateral waving (right) and clapping
hands.

In addition, the list includes postural transitions and static
positions such as assuming a seated position, upright
position, seated position followed by standing position and
the T-pose. A wide variety of physical actions, ranging from
basic gestures to intricate sequences, are included in these
activities, offering a complete collection for the analysis and
identification of human movements.
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Table 1
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The comparison of LSTM, Bi-LSTM and proposed Bi-LSTM architectures

Feature Bi-LSTM Attention Mechanism with Bi-LSTM
Direction of Data Processing Bidirectional (both forward and Bidirectional (both forward and backward)
backward)

Temporal Context

Utilizes full sequence context

Selectively focuses on important parts of
the sequence

Training Complexity

Moderate to High

High (due to additional attention
parameters)

Tasks

Memory Utilization Moderate High (due to attention layer computations
and weight storage)
Suitability for Time-Series High Very High (better at focusing on relevant
Data time steps)
Real-Time Processing Moderate Moderate (requires optimization for real-
time)
Learning Long-Term High (captures long-term Very High (enhanced by focusing on key
Dependencies dependencies from both directions) time steps)
Parameter Count Moderate to High High (additional parameters for attention
weights)
Feature Learning Capability Good Excellent (better representation by
weighing important features)
Temporal Context Utilization Good Excellent (focuses on important parts of the
temporal context)
Model Complexity Moderate High (due to the addition of the attention
mechanism)
Parameter Efficiency Moderate Less Efficient (requires more parameters)
Execution Time Moderate Higher (requires extra computation for
attention weights)
Adaptability to Sequence Moderate High (dynamically weighs different lengths
Length Variation more effectively)
Robustness to Noise Moderate High (can ignore noisy or irrelevant parts of
the input sequence)
Customization for Specific Moderate High (attention can be tailored to focus on

different aspects)

Integration with Other
Architectures

Easy (can be integrated with CNNs,
etc.)

Moderate (integration may need extra
adjustments for attention)

Typical Use Cases

General time-series analysis, speech
recognition, NLP

Complex time-series data, HAR, NLP tasks
needing finer attention

Jumping in place

Jumping jacks

Bending - hands up all the way down

Punching [boxing]

Waving - two hands

Waving - one hand (right) 7 Clapping hands
Sit down

Stand up
Throwing & ball 9 5it down then stand up
Sit down

Stand up

T-pose

Figure 2: A variety of human activities used for recognition purposes, including dynamic movements
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Table 2
Summary of the main characteristics of the used datasets.
Dataset # classes # actors # seqs. Size (pixels) FPS
WvVU 13 48 200 640*480 20
IXMAS 13 10 1148 390*291 23
GBA 13 17 1450 1920*1080 50

Illustrative example: Figure 3 provided model summary
depicting a neural network architecture with an input layer
accepting data of shape (None, 100, 3), followed by a
bidirectional layer with 34,816 parameters. A dropout layer
with 0 parameters follows, maintaining the output shape of
(None, 100, 128). The model incorporates several dense
layers: the first with 1 output unit (129 parameters) and
another dense layer towards the end with 64 output units
(8,256 parameters). Various lambda layers and an activation
layer are interspersed to modify the outputs followed by a
multiply layer to combine multiple inputs. The final dense
layer has 6 output units and 390 parameters. The model has
a total of 43,591 parameters, all of which are trainable,
indicating a moderately complex neural network suitable for
tasks like sequence processing or time-series analysis.

Training loss (blue) and validation loss (orange) over a
number of epochs for an example machine learning model
are shown in fig. 4. At first, both losses get reduced quickly.
— signs of fast learning by the model. As the epochs move,
we see a decreased but still declining loss and then both
curves flatten down together. This trend means the model is
learning well and not significantly overfitting, because both
validation losses seem to follow the training loss i.e. no huge
surprise on unseen data.

The accuracy of a machine learning model throughout
training and testing operations across several epochs is
shown in figure 5. Initially, both the training and test
accuracy showed a substantial and rapid increase, indicating
that the model acquires knowledge rapidly. After several
epochs, the accuracy of both the training and test data
consistently converged to a high value and stayed relatively
constant with few fluctuations. The aforementioned finding
suggests that the model is continuously attaining excellent
performance on both the training and test datasets, therefore
showing robust generalization abilities and a little
inclination to overfit to the training data.

Figure 6 presents a confusion matrix that demonstrates the
performance of a classification model across many classes.
The objects positioned along the diagonal and having the
highest values correspond to the number of correct
predictions for each class whereas the items located off the
diagonal indicate the number of misclassifications. The
matrix demonstrates that the model regularly generates high-
quality predictions for most classes, as seen by the
significant number of correct predictions highlighted in a
darker shade of blue along the diagonal. Nevertheless, there
are cases of misclassifications, shown by the existence of
cells with lighter colors positioned further away from the
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diagonal. These findings indicate that certain groups are
being erroneously categorized to varying degrees. These
results suggest that while the model has a high level of
general accuracy, there is room for improving its capacity to
distinguish between specific groups.

A confusion matrix illustrating the performance of a
classification model over many classes is shown in figure 7.
The diagonal cells of the matrix, with the largest values,
represent the count of properly predicted cases for each
class, therefore indicating the model's robust performance in
reliably detecting the majority of categories. Instances of
misclassifications, when the model has mistakenly identified
one class as another, are shown by the lighter hues and lower
values off the diagonal. While the matrix demonstrates
commendable general accuracy with a clustering of accurate
predictions along the diagonal, there are some cases where
the model's predictions are inaccurate, indicating possible
opportunities for additional model enhancement and greater
ability to differentiate between comparable classes.

Results and Discussion

The result in the planned and the existing method for the
WVU dataset: Table 3 and figure 8 provide a comparison
of the level of accuracy, precision, recall and F1 score across
many machine learning models used for identifying human
activities. Among the models evaluated, Decision Tree,
GaussianNB,  KNeighbors,  Linear SVC, Linear
Discriminant Analysis, Logistic Regression, Random Forest
Classifier, RBF SVC and XGB Classifier exhibit
progressively higher levels of quality. Within the set of
models, XGB classifier attains the best level of accuracy,
reaching 93.8%. By using the Bi-LSTM model, the results
are much enhanced, reaching an accuracy rate of 98.9%. The
Attention-Driven BI-LSTM model, as proposed, has
exceptional performance, achieving an accuracy of 99.76%
with precision, recall and F1 scores all above 99%. These
results demonstrate its higher effectiveness in precisely
detecting human behaviors in comparison to the other
models examined

The result in the projected and the existing method for
the GBA Dataset: A comparative analysis of many machine
learning models for human activity identification is shown
in table 3 and figure 9. The evaluation is based on metrics
including accuracy, precision, recall and F1 score.
Conventional algorithms such as Decision Tree, Gaussian
NB, KNeighbors, Linear SVC, Linear Discriminant
Analysis and Logistic Regression provide modest
performance, achieving accuracy rates between 78.3% and
89.3%. Highly sophisticated models, such as the Random
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accuracy rates as high as 93.8%.

Figure 3: Depicting a neural network architecture with an input layer accepting data
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Figure 7: Confusion matrix for Proposed Attention-Driven BI-LSTM

Table 3

The result in the proposed and the present method for the WVU dataset

Model Name

Accuracy (%)

Precision (%)

Recall (%0)

F1(%)

Decision Tree [1]

85.2

84

83.5

83.75

Gaussian NB [1]

78.3

77.9

78.1

78

KNeighbors [1]

86.5

85.7

86.2

85.95

Linear SVC(L Based Impl) [1]

87.1

86.4

86.8

86.6

Linear Discriminant Analysis [1]

88.2

87.9

88

87.95

Logistic Regression [1]

89.3

89.1

89

89.05

Random Forest Classifier [1]

91.7

915

91.6

91.55

RBF SVC [1]

92.5

92.2

92.3

92.25

XGB Classifier [1]

93.8

935

93.6

93.55

Bi-LSTM

98.9

98.7

98.5

98.6

Proposed Attention-Driven BI-LSTM

99.76

99.72

99.62

99.48
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Figure 8: The result in the proposed and the existing method for the WVU dataset

Table 4
The result in the proposed and the present method for the GBA dataset

Model Name Accuracy (%) Precision (%) Recall (%0) F1(%)
Decision Tree [1] 85.2 84 83.5 83.75
Gaussian NB [1] 78.3 77.9 78.1 78

KNeighbors [1] 86.5 85.7 86.2 85.95
Linear SVC(LBased Impl) [1] 87.1 86.4 86.8 86.6

Linear Discriminant Analysis [1] 88.2 87.9 88 87.95
Logistic Regression [1] 89.3 89.1 89 89.05
Random Forest Classifier [1] 91.7 91.5 91.6 91.55
RBF SVC [1] 92.5 92.2 92.3 92.25
XGBClassifier [1] 93.8 93.5 93.6 93.55
Proposed Bi-LSTM 98.9 98.7 98.5 98.6

Proposed Attention-Driven BI-LSTM 99.85 99.76 99.37 99.43

Deep learning models provide the highest level of
performance: the proposed Bi-LSTM attains an accuracy of
98.9%, while the proposed Attention-Driven Bi-LSTM
surpasses this by achieving an exceptional accuracy of
99.85%, together with similarly high precision, recall and F1
scores, so showcasing its superior efficacy in tasks related to
recognizing human activities.

The result in the projected and the existing method for
the IXMAS Dataset: Table 5 and figure 10 assessed several
models for human activity identification using accuracy,
precision, recall and F1 score indicators. Conventional
Machine Learning Models such as Decision Tree, Gaussian
NB, KNeighbors, Linear SVC, Linear Discriminant
Analysis and Logistic Regression provide rather satisfactory
performance, achieving accuracy rates between 78.3% and
89.3%.

Highly sophisticated models like the Random Forest

https://doi.org/10.25303/188da019032

Classifier, RBF SVC and XGB Classifier, demonstrate
enhanced accuracy, achieving a maximum of 93.8%. Deep
learning models demonstrate the highest performance, with
the proposed bi-LSTM model achieving an accuracy of
98.9% and the proposed Attention-Driven bi-LSTM model
yielding the highest accuracy of 99.83%. These models also
exhibit outstanding precision, recall and F1 scores,
underscoring their superior effectiveness in human activity
recognition.

Conclusion

The proposed Attention-Driven BI-LSTM model has
exceptional performance in the areas of human activity
detection and classification, surpassing both conventional
and sophisticated machine learning models by a substantial
margin. A comparison examination reveals that traditional
models such as Decision Tree, Gaussian NB, KNeighbors
and Linear SVC attain accuracy levels ranging from 78.3%
to 89.3%. In contrast, more advanced methods like the

29



- Disaster Advances ~ Vol.18(8) August (2025)

Random Forest Classifier, RBF SVC and XGB Classifier
enhance accuracy to 93.8%. Nevertheless, these models are
still inferior in comparison to deep learning techniques.
Reflecting the benefits of recurrent neural networks in
capturing temporal relationships in sequential data, the Bi-
LSTM model enhances the recognition accuracy to 98.9%.

The suggested Attention-Driven BI-LSTM achieves the
greatest performance, yielding an exceptional accuracy of
99.83%, as well as precision, recall and F1 scores over 99%.

The significant enhancement may be ascribed to the
mechanism's capacity to dynamically concentrate on the
most relevant characteristics, hence optimizing the model's
ability to differentiate between various activities with a high
level of certainty. A robust and highly successful solution for
human activity detection, the Attention-Driven BI-LSTM
model has the potential to greatly advance applications in
healthcare, surveillance and smart environments where
precise and real-time activity monitoring are crucial.

Updated Model Performance Comparison
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Figure 9: The result in the proposed and the existing method for the GBA dataset
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Figure 10: The result in the proposed and the existing method for the IXMAS Dataset
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Table 5
The result in the proposed and the present method for the IXMAS Dataset

Model Name Accuracy (%) | Precision(%) | Recall(%) | F1(%0)
Decision Tree [1] 85.2 84 83.5 83.75
Gaussian [1] 78.3 77.9 78.1 78

Kneighbors [1] 86.5 85.7 86.2 85.95
Linear SVC(LBasedImpl) [1] 87.1 86.4 86.8 86.6
Linear Discriminant Analysis [1] 88.2 87.9 88 87.95
Logistic Regression [1] 89.3 89.1 89 89.05
Random Forest Classifier[1] 91.7 91.5 91.6 91.55
RBF SVC [1] 925 92.2 92.3 92.25
XGB Classifier [1] 93.8 93.5 93.6 93.55
Proposed Bi-LSTM 98.9 98.7 98.5 98.6
Proposed Attention-Driven BI-LSTM 99.83 99.46 99.75 99.85

References

1. Ahmad A.Y.A.B., Alzubi J., James S.V.O., Nyangaresi C.
Kutralakani and Krishnan A., Enhancing Human Action
Recognition with Adaptive Hybrid Deep Attentive Networks and
Archerfish Optimization, Computers, Materials & Continua,
80(3), 4791-4812, doi: 10.32604/cmc.2024.052771 (2024)

2. Anh V.HT. and Nguyen T.O., Enhanced Topology
Representation Learning for Skeleton-Based Human Action
Recognition, Procedia Comput Sci, 246, 3093-3102, doi:
10.1016/j.procs.2024.09.363 (2024)

3. Aouaidjia K., Zhang C. and Pitas I., Spatio-temporal invariant
descriptors for skeleton-based human action recognition, Inf Sci (N
Y), 700, 121832, doi: 10.1016/j.ins.2024.121832 (2025)

4. Bouzid H. and Ballihi L. SpATr: MoCap 3D human action
recognition based on spiral auto-encoder and transformer network,
Computer Vision and Image Understanding, 241, 103974, doi:
10.1016/j.cviu.2024.103974 (2024)

5. Céceres Pefia O., Silva Marchan H., Albert M. and Gil M.,
Recognition of Human Actions through Speech or Voice Using
Machine Learning Techniques, Computers, Materials & Continua,
77(2), 1873-1891, doi: 10.32604/cmc.2023.043176 (2023)

6. Chang J.W., Chen M.H.,, Ma H.S. and Liu H.L., Human
movement science-informed multi-task spatio temporal graph
convolutional networks for fitness action recognition and
evaluation, Appl Soft Comput, 164, 111963, doi:
10.1016/j.as0c.2024.111963 (2024)

7. Cob-Parro A.C., Losada-Gutiérrez C., Marron-Romera M.,
Gardel-Vicente A. and Bravo-Mufioz 1., A new framework for
deep learning video based Human Action Recognition on the edge,
Expert Syst Appl, 238, 122220, doi: 10.1016/j.eswa.2023.122220
(2024)

8. Fu H., Gao J. and Liu H., Human pose estimation and action
recognition for fitness movements, Comput Graph, 116, 418-426,
doi: 10.1016/j.cag.2023.09.008 (2023)

9. Huang B., Wang S., Hu C. and Li X., Semi-supervised human
action recognition via dual-stream cross-fusion and class-aware
memory bank, Eng Appl Artif Intell, 136, 108937, doi:
10.1016/j.engappai.2024.108937 (2024)

https://doi.org/10.25303/188da019032

10. Hu Z., Xiao J., Li L., Liu C. and Liu C., Human-centric
multimodal fusion network for robust action recognition, Expert
Syst Appl, 239, 122314, doi: 10.1016/j.eswa.2023.122314 (2024)

11. Kapoor S., Sharma A. and Verma A., Diving deep into human
action recognition in aerial videos: A survey, J Vis Commun Image
Represent, 104, 104298, doi: 10.1016/j.jvcir.2024.104298 (2024)

12. Kim H., Jeon H., Kim D. and Kim J., Elevating urban
surveillance: A deep CCTV monitoring system for detection of
anomalous events via human action recognition, Sustain Cities
Soc, 114, 105793, doi: 10.1016/j.scs.2024.105793 (2024)

13. Liang W. and Xu X., HgaNets: Fusion of Visual Data and
Skeletal Heatmap for Human Gesture Action Recognition,
Computers, Materials & Continua, 79(1), 1089-1103, doi:
10.32604/cmc.2024.047861 (2024)

14. Lin W. and Li X., GRASNet: A novel graph neural network for
improving human action recognition and well-being assessment in
smart manufacturing, Manuf Lett, 41, 1452-1463, doi:
10.1016/j.mfglet.2024.09.172 (2024)

15. Liu D., Huang Y., Liu Z., Mao H., Kan P. and Tan J., A
skeleton-based assembly action recognition method with feature
fusion for human-robot collaborative assembly, J Manuf Syst, 76,
553-566, doi: 10.1016/j.jmsy.2024.08.019 (2024)

16. Mehmood F., Guo X., Chen E., Akbar M.A., Khan A.A. and
Ullah S., Extended multi-stream temporal-attention module for
skeleton-based human action recognition (HAR), Compute Human
Behave, 163, 108482, doi: 10.1016/j.chb.2024.108482 (2025)

17. Mitsuzumi Y., Irie G., Kimura A. and Nakazawa A., Phase
Randomization: A data augmentation for domain adaptation in
human action recognition, Pattern Recognition, 146, 110051, doi:
10.1016/j.patcog.2023.110051 (2024)

18. Ranjbar M.H., Abdi A. and Park J.H., Kinematic matrix: One-
shot human action recognition using kinematic data structure, Eng
Appl Artif Intelli, 139, 109569, doi: 10.1016/
j-engappai.2024.109569 (2025)

19. Tasoren A.E. and Celikcan U., NOVAction23: Addressing the

data diversity gap by uniquely generated synthetic sequences for
real-world human action recognition, Compute Graph, 118, 1-10,

31



Disaster Advances

doi: 10.1016/j.cag.2023.10.011 (2024)

20. Verma A, Singh V., Chouhan A.P.S., Abhishek and Rawat A.,
Vision-based action recognition for the human-machine
interaction, In Artificial Intelligence and Multimodal Signal
Processing in Human-Machine Interaction, Elsevier, 363-376, doi:
10.1016/B978-0-443-29150-0.00011-1 (2025)

21. Wang T., Liu Z., Wang L., Li M. and Wang X.V., Data-
efficient multimodal human action recognition for proactive
human-robot collaborative assembly: A cross-domain few-shot
learning approach, Robot Compute Integer Manuf, 89, 102785, doi:
10.1016/j.rcim.2024.102785. (2024)

22. Wang Z., Yan J., Yan G. and Yu B., Multi-scale control and
action recognition based human-robot collaboration framework
facing new generation intelligent manufacturing, Robot Comput
Integr Manuf, 91, 102847, doi: 10.1016/j.rcim.2024.102847
(2025)

23. Wang Z. and Yan J., Deep learning based assembly process
action recognition and progress prediction facing human-centric
intelligent manufacturing, Comput Ind Eng, 196, 110527, doi:
10.1016/j.cie.2024.110527 (2024)

https://doi.org/10.25303/188da019032

Vol. 18 (8) August (2025)

24. Wu H., Ma X. and Li Y., Transformer-based multiview
spatiotemporal feature interactive fusion for human action
recognition in depth videos, Signal Process Image Commun, 131,
117244, doi: 10.1016/j.image.2024.117244 (2025)

25. Wu S,, Lu G, Han Z. and Chen L., A robust two-stage
framework for human skeleton action recognition with GAIN and
masked autoencoder, Neurocomputing, 623, 129433, doi:
10.1016/j.neucom.2025.129433 (2025)

26. Zhang Y., Zhao C., Yao Y., Wang C., Cai G. and Wang G.,
Human posture estimation and action recognition on fitness
behavior and fitness, Alexandria Engineering Journal, 107, 434—
442, doi: 10.1016/j.aej.2024.07.039 (2024)

27. Zhou S. et al, A multidimensional feature fusion network based
on MGSE and TAAC for video-based human action recognition,
Neural Networks, 168, 496-507, doi: 10.1016/
j.neunet.2023.09.031 (2023).

(Received 09" March 2025, accepted 08" May 2025)

32



